关注于数据分析的小站

2.6. 协方差估计

校验者:
        @李昊伟
        @小瑶
@Loopy
翻译者:
        @柠檬

许多统计问题在某一时刻需要估计一个总体的协方差矩阵,这可以看作是对数据集散点图形状的估计。 大多数情况下,基于样本的估计(基于其属性,如尺寸,结构,均匀性), 对估计质量有很大影响。 sklearn.covariance 方法的目的是 提供一个能在各种设置下准确估计总体协方差矩阵的工具。

我们假设观察是独立的,相同分布的 (i.i.d.)。

2.6.1. 经验协方差

已知数据集的协方差矩阵与经典 maximum likelihood estimator(最大似然估计) (或 “经验协方差”) 很好地近似,条件是与特征数量(描述观测值的变量)相比,观测数量足够大。 更准确地说,样本的最大似然估计是相应的总体协方差矩阵的无偏估计。

样本的经验协方差矩阵可以使用 empirical_covariance 包的函数计算 , 或者通过 EmpiricalCovariance 使用 EmpiricalCovariance.fit 方法将对象与数据样本拟合 。 要注意,取决于数据是否居中,结果会有所不同,所以可能需要准确使用参数 assume_centered。 如果使用 assume_centered=False ,则结果更准确。且测试集应该具有与训练集相同的均值向量。 如果不是这样,两者都应该使用中心值, assume_centered=True 应该使用。

示例:

2.6.2. 收敛协方差

2.6.2.1. 基本收敛

尽管是协方差矩阵的无偏估计, 最大似然估计不是协方差矩阵的特征值的一个很好的估计, 所以从反演得到的精度矩阵是不准确的。 有时,甚至出现数学原因,经验协方差矩阵不能反转。 为了避免这样的反演问题,引入了经验协方差矩阵的一种变换方式:shrinkage

在 scikit-learn 中,该变换(具有用户定义的收缩系数) 可以直接应用于使用 shrunk_covariance 方法预先计算协方差。 此外,协方差的收缩估计可以用 ShrunkCovariance 对象 及其 ShrunkCovariance.fit 方法拟合到数据中。 再次,根据数据是否居中,结果会不同,所以可能要准确使用参数 assume_centered

在数学上,这种收缩在于减少经验协方差矩阵的最小和最大特征值之间的比率。 可以通过简单地根据给定的偏移量移动每个特征值来完成, 这相当于找到协方差矩阵的l2惩罚的最大似然估计器(l2-penalized Maximum Likelihood Estimator)。在实践中,收缩归结为简单的凸变换:
\Sigma_{\rm shrunk} = (1-\alpha)\hat{\Sigma} + \alpha\frac{{\rm Tr}\hat{\Sigma}}{p}\rm Id.

选择收缩量, \alpha 相当于设置偏差/方差权衡,下面将讨论。

示例:

2.6.2.2. Ledoit-Wolf 收敛

在他们的 2004 年的论文 [1] 中, O.Ledoit 和 M.Wolf 提出了一个公式, 用来计算优化的收敛系数 \alpha , 它使得估计协方差和实际协方差矩阵之间的均方差进行最小化。

sklearn.covariance 包中,可以使用 ledoit_wolf 函数来计算样本的 基于 Ledoit-Wolf estimator 的协方差, 或者可以针对同样的样本 通过拟合 LedoitWolf 对象来获得。

注意:体协方差矩阵为各向同性(isotropic)的情形

值得注意的是,当样本数量远远大于特征数量时,人们会认为不需要收缩。这背后的直觉是,如果总体协方差是满秩的, 当样本数量增加时,样本协方差也会变为正定。因此,没有收缩的必要,该方法应该自动做到这一点。

然而,当总体协方差恰好是恒等矩阵(identity matrix)的倍数时,在Ledoit-Wolf过程中就不是这样了。 在这种情况下,Ledoit-Wolf收缩估计值随着样本数的增加而接近1。 这表明,Ledoit-Wolf意义下协方差矩阵的最优估计是恒等式的倍数(multiple of the identity)。 由于总体协方差已经是恒等矩阵的倍数,Ledoit-Wolf解确实是一个合理的估计。

示例:

参考资料:

  • [1] O. Ledoit and M. Wolf, “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Journal of Multivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

2.6.2.3. Oracle 近似收缩

在数据为高斯分布的假设下,Chen et al. 等 [2] 推导出了一个公式,旨在 产生比 Ledoit 和 Wolf 公式具有更小均方差的收敛系数。 所得到的估计器被称为协方差的 Oracle 收缩近似估计器。

sklearn.covariance 包中, OAS 估计的协方差可以使用函数 oas 对样本进行计算,或者可以通过将 OAS 对象拟合到相同的样本来获得。

http://sklearn.apachecn.org/cn/0.19.0/_images/sphx_glr_plot_covariance_estimation_0011.png

设定收缩时的偏差方差权衡:比较 Ledoit-Wolf 和 OAS 估计量的选择

参考资料:

  • [2]Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

示例:

http://sklearn.apachecn.org/cn/0.19.0/_images/sphx_glr_plot_lw_vs_oas_0011.png

2.6.3. 稀疏逆协方差

协方差矩阵的逆矩阵,通常称为精度矩阵(precision matrix),它与部分相关矩阵(partial correlation matrix)成正比。 它给出部分独立性关系。换句话说,如果两个特征在其他特征上有条件地独立, 则精度矩阵中的对应系数将为零。这就是为什么估计一个稀疏精度矩阵是有道理的: 通过从数据中学习独立关系,协方差矩阵的估计能更好处理。这被称为协方差选择。

在小样本的情况,即 n_samples 是数量级 n_features 或更小, 稀疏的逆协方差估计往往比收敛的协方差估计更好。 然而,在相反的情况下,或者对于非常相关的数据,它们可能在数值上不稳定。 此外,与收敛估算不同,稀疏估计器能够恢复非对角线结构 (off-diagonal structure)。

GraphLasso 估计器使用 L1 惩罚执行关于精度矩阵的稀疏性: alpha 参数越高,精度矩阵的稀疏性越大。 相应的 GraphLassoCV 对象使用交叉验证来自动设置 alpha 参数。

http://sklearn.apachecn.org/cn/0.19.0/_images/sphx_glr_plot_sparse_cov_0011.png

注意:结构恢复

从数据中的相关性恢复图形结构是一个具有挑战性的事情。如果您对这种恢复感兴趣,请记住:

  • 相关矩阵的恢复比协方差矩阵更容易:在运行 GraphLasso 前先标准化观察值
  • 如果底层图具有比平均节点更多的连接节点,则算法将错过其中一些连接。
  • 如果您的观察次数与底层图形中的边数相比不大,则不会恢复。
  • 即使您具有良好的恢复条件,通过交叉验证(例如使用GraphLassoCV对象)选择的 Alpha 参数将导致选择太多边。 然而,相关的边会比不相关的边有更重的权重。

数学公式如下:

\hat{K} = \mathrm{argmin}_K \big(\mathrm{tr} S K - \mathrm{log} \mathrm{det} K+ \alpha \|K\|_1\big)

其中:K 是要估计的精度矩阵(precision matrix), S 是样本的协方差矩阵。 \|K\|_1 是非对角系数 K (off-diagonal coefficients)的绝对值之和。 用于解决这个问题的算法是来自 Friedman 2008 Biostatistics 论文的 GLasso 算法。 它与 R 语言 glasso 包中的算法相同。

示例:

参考资料:

2.6.4. Robust 协方差估计

实际数据集通常是会有测量或记录错误。合格但不常见的观察也可能出于各种原因。 每个不常见的观察称为异常值。 上面提出的经验协方差估计器和收缩协方差估计器对数据中异常观察值非常敏感。 因此,应该使用更好的协方差估计(robust covariance estimators)来估算其真实数据集的协方差。 或者,可以使用更好的协方差估计器(robust covariance estimators)来执行异常值检测, 并根据数据的进一步处理,丢弃/降低某些观察值。

sklearn.covariance 包实现了 robust estimator of covariance, 即 Minimum Covariance Determinant [3]。

2.6.4.1. 最小协方差决定

最小协方差决定(Minimum Covariance Determinant)估计器是 由 P.J. Rousseeuw 在 [3] 中引入的数据集协方差的鲁棒估计 (robust estimator)。 这个想法是找出一个给定比例(h)的 “好” 观察值,它们不是离群值, 且可以计算其经验协方差矩阵。 然后将该经验协方差矩阵重新缩放以补偿所执行的观察选择(”consistency step(一致性步骤)”)。 计算最小协方差决定估计器后,可以根据其马氏距离(Mahalanobis distance)给出观测值的权重, 这导致数据集的协方差矩阵的重新加权估计(”reweighting step(重新加权步骤)”)。

Rousseeuw 和 Van Driessen [4] 开发了 FastMCD 算法,以计算最小协方差决定因子(Minimum Covariance Determinant)。 在 scikit-learn 中,该算法在将 MCD 对象拟合到数据时应用。FastMCD 算法同时计算数据集位置的鲁棒估计。

Raw估计可通过 MinCovDet 对象的 raw_location_raw_covariance_ 属性获得。

参考资料:

  • [3] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.
  • [4] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS.

示例:

异常值对位置和协方差估计的影响 使用Mahalanobis距离从异常值中分离异常值
robust_vs_emp mahalanobis

{% endraw %}

赞(7)
未经允许不得转载:0dayhub » 2.6. 协方差估计
分享到: 更多 (0)
%d 博主赞过: